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Exactly solvable potentials and the concept of shape invariance 
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Obrervatoire de Nice. BP 35, Nice, France 

Received 30 April 1991, in final form 12 August 1991 

Abstract. We analyse the relationship between shape invariance and exactly solvable 
potentials. Using earlier results, we s h o w  that all actually known shape invariant potentials 
with a single parameter can be recovered quite simply. Extension to the case of shape 
invariant potentials with two parameters as well as to non-shape-invariant but exactly 
solvable potentials are also possible. 

According to Gedenshtein (1983), the concept of shape invariance can be formulated 
as follows: 

f 2 ( a , x ) = f i ( a l , x ) + R ( o l )  (1) 
in which fi,f2 are the SUSY partners potentials (Witten 1981), a is an ensemble of 
parameters, a,  = F ( a ) ,  F is a given transformation operation on these parameters. The 
following consequences are interesting: 

(i) It provides an elementary but exact determination of the energy spectrum 

E.= R ( a j )  (2) 
; = I  

where n labels the nth excited state, R ( a ; )  are quantities independent of x, a, = F " ' ( a ) .  
(ii) The nth excited wavefunction Q'.-'(a,x) is formally given by (Sukumar 1985, 

Dutt et al 1988) 
n - l  

$;-'(a, x )  = No Il A'(a j ,  x ) $ d a , x )  (3)  
i = l  

No is a normalization constant and A'(a, ,  x )  represents the ith 'ladder operator' 
d 

dx 
A*(a i ,  x )  = i-+ o'(a,, x) (4) 

with v' (a, ,  x )  = dv/dx, v(a , ,  x )  is the corresponding superpotential while JI. is the 
ground state wavefunction ( E , = O )  which can be determined from u ' ( a , x )  

The recent revival of an old problem of quantum mechanics dealing with exactly 
solvable potentials, on the other hand (Schrodinger 1941, lnfeld and Hull 1951, 
Bhattacharjie 1962 and others) with its close relation with the concept of shape 
invariance (Dabrowska et a1 1987, Dutt et a1 1988, Levai 1989, Cooper et a1 1989 and 
others) have in fact opened new perspectives particularly in the construction of this 
type of potential. 

t Permanent address: 01 PaNiS du Breuil, 92160 Antony, France. 
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In an attempt to understand more on this subject, we were led recently to raise the 
following question: is the concept of shape invariance (in the sense of Gedenshtein) 
not only a sufficient but also a necessary condition in generating (although with some 
possible exceptions) exactly solvable potentials? Obviously this is related to another 
aspect which was discussed earlier (Cao 1990b) where we wondered whether the 
theorem on the existence of a superpotential which includes all actually known 
shape-invariant potentials may also incorporate some special types of non-shape- 
invariant but exactly solvable potentials or, in other words, how the concept of shape 
invariance can be taken into account by this theorem. 

The clarification of this question will constitute the main objective of the present 
work in which we first show how shape-invariant potentials with one parameter can 
be constructed. 

Next, the technique of 6 transformation will be brietly reviewed and will enable 
us to generate shape invariant potentials with two parameters. The discussion is 
extended to the case of multiparameters particularly in the construction of non-shape- 
invariant but exactly solvable potentials. 

‘Existence theorem’ and the shape invariance concept. We are concerned with a system 
of two second-order differential equations 

- + J ( x )  y i = 2 E y i  i = l , 2 .  1 
The theorem states that the two solutions y , , y 2  are SUSY partners iff ,(x),  f 2 ( x )  are 
related by the following conditions: 

from which we may extract some immediate consequences 

Statement 1. For any arbitrary analytic function f , ( x ) ,  (6) implies that it is always 
possible to construct its SUSY partner fi(x); they are both exactly solvable if one of 
them is. 

Proof: Le!: 

From (6) we have 

r = s  2 

and s is determined by the Ricatti equation 

s’+ s2- f , ( x )  = 0. 

Its solution is 

(9) 



Letter to the Editor L1167 

where Y , . ~ ( X )  is the solution of the Schrodinger equation corresponding to the zero 
cncrgy ground state. In  the SUSY tcrminology we recognize that s can be identified 
with U' so that 

f i  = u ' 2 -  0,) f 2  = u'2 + U'#. (11) 

The 'ladder operator' A* are defined by A* = i d / d x +  U' and the couple ( y , ,  y z )  must 
satisfy the system: 

A t y ,  = ( 2 E ) " 2 y ,  A - y ,  = ( 2 E ) ' l 2 y , .  ( 1 2 )  

From (1) and (11) we have: 

f d a , ,  ~ ) + R ( a , ) = f , ( a , x ) + 2 u " ( a , x ) .  (13) 

Note that if U = a I  (no change of the parameters) the quantity u'(a, x )  must be 

f d a , X ) =  h ( a , x ) + C ( a )  (14) 

in which C ( a )  is a constant and h(a, x) an analytic function of x. Consequently they 
must satisfy simultaneously the two conditions: 

constant. If a #  a , ,  the simplest structure of f l ( a , x )  may be taken as: 

h ( n ,  , x )  - h (  a, x )  = 2u"( a, x )  

C ( a ) - C ( a , ) = R ( a , ) .  

Which can be summarized in a second statement. 

Statement 2. The function f i ( a , x )  is shape invariant if it has the structure (14) in 
which the quantities h(a ,  x), C ( a )  must satisfy simultaneously conditions (15). 

(15) 

From these two statements, it will be easy to check the following relations which 
are essential in our construction of shape-invariant potentials 

(17) 
1 h ( a , , x ) + h ( a , x )  

- [ h( a , ,  x )  + h( a, x ) ]  = m = constant 5 [ h ( a I 1  x )  - h(a ,  x )  1 
C ( a ) = + m  (18) 

with h ' = d h / d x ;  (16) defines the superpotential u(a, x ) .  (17) is a differential equation 
from which h(a ,  x )  can be inferred if the constant m is chosen appropriately and (18) 
leads to the determination of the energy spectrum from ( 2 ) .  

Shape invariant potentials with oneparameter. We consider now a few simple analytical 
forms of h ( a , x )  such that (17) can be solved exactly. 

Example 1. Let h ( a , x ) = e A ( a ) ,  g ( x )  (separability) in which A ( a ) ,  g(x) are any 
function of a and x, & = + I .  From (17) we have 
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The analytical form of the solution will depend on E and on the sign of the constant 
m. For instance if we take 

A ( a )  = a ( a  + 1) . a , = a - 1  C ( a ) = - a  2 

then (16), (17) yield the following result: 

I f E = - l ,  mPOthen 

a tanh x 
a cot x. 

uya, x )  = 

Finally, if we take m = 0 then u‘(a,  x) = a / x  with 

A ( a ) =  a ( a +  1) a , = a - l  C ( a )  = 0. 

Summarizing, we see that with the five different forms of the superpotential U’ given 
above, relation (11) will lead to the well known shape-invariant potentials reported in 
most actual compilations (Dutt er a/ 1987, Dabrowska el a/ 1987, Levai 1989). 

Example 2. Let h(a ,  x) = g 2 + 2 a g  where g and a have the same meaning as above. 
The equation (17) can also be solved exactly if we take m = -2( a +i)2; for an arbitrary 
cons t an to f in t eg ra t ionBwef indg=Be-“andu‘ (a ,~ )=Be-” - (a+f ) ,C(a )=(a+f )~  
and 

f = B2e-2”+2B(a+1) e--+(a+f)’ 

which IS the weii known generalized Morse potential. 

Example 3. Note also for completeness that, in the case a, = a (no change of para- 
meters), U’ must be a linear function of x, so in setting u’(x) = fwx, we have the harmonic 
oscillator problem which is not strictly shape invariant but, however, an exactly solvable 
potential. 

We shall now use these results to extend the analysis to thecase of shape-invariant 
potentials with two parameters through the technique of the C transformation which 
will first be briefly described. 

77w C irunsformaiion. Keeping the same notation as in a previous paper we consider 
a transformation such that (Cao 1991) 

@J = e y  (19) 

in which y = ( y , ,  y2) are the SUSY partners defined in (12), @J = (&, &) and e = c(x)I, 
I is the unit matrix and c(x) is for the moment an arbitrary function of x. With this 
transformation the new ‘ladder operators’ A* are 

6‘ - , c’ (20) 
C‘ 

dx C 
n - U  -- 

C 
d l  = U‘+- I f  d A =--+GI . - P  dx -“ . -n 

where U’ is the superpotential taken from examples 1 ,  2. 3. 
The transformation yields the new system of equations 

A+& = (2€)’/2& A;42 = ( 2 € ) 5 ,  
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in which obviously the components &, & are not SUSY partners since A., A, are not 
adjoint. We may nevertheless point out the following interesting properties. 

(i) The commutativity relation is invariant in this transformation 

[ a , , & ] = [ A - , A t ] = - 2 u "  

(ii) Defining the new opeator '6 as 

d.=(, 0 a. o )  dP=(a;  0 0  o) 
and the 'Hamiltonians' A by 

f i  = td", 6,) 

[&, A I =  [&, A] = o  
it  can be verified that 

The representation & , $2 may become useful in certain cases, for instance when we 
use the coordinate transformation x + r such thatf2"(x) = dr /dx  and choosing c(x) = 
f"(x) ( m  is a parameter) then it can be shown that the present method leads to the 
'f operator transformation' approach already discussed by other authors (Cooper et 
ol 1989) who showed that, in certain cases, it can generate the Natanzon potentials 
(i.e. potentials with solutions expressed by a combination of hypergeometric functions) 
which are not shape invariant but exactly solvable under special conditions (see also 
Cervero 1991, Levai 1991). 

In  thepresent work we shall however follow a different path by considering the 
couples ( 6 ,  & , T ) ;  (&, &.,) defined by: 

A .  

By construction, (&, &), ($2 ,  &) are SUSY partners and as the treatment for the 
cases a and p are quite similar,from no,w on we shall omit the indices for simplicity. 
For example the equations for 4, and h.. are 

k A + $ ,  = 2 E 4 ,  a+k41,s = 2 E $ , , ,  (23) 

or, more explicitly, 

As c(x) still remains arbitrary, it will serve to incorporate the second parameter in the 
new superpotential u(x) defined by: 

(25) 
C' 

6'(x)=u'(x)+-. 
C 
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Remembering that the couple y ,  , y2 are in fact solutions of shape-invariant potentials 
corresponding to U',  the solution qh, of (24) can be written as 

4, = C(X)Yl (26)  

if c(x) is chosen appropriately. 
However, the determination of the energy spectrum of system can be done analyti- 

cally only under certain conditions, the concept of shape invariance being one of these 
conditions. In spite of these limitations, one can nevertheless foresee that the present 
approach is susceptible to generate a wide variety of exactly solvable or  solvable 
potentials if normalization requirements on qh, can be met (by solvable potential we 
simply mean here that the solution of the Schradinger equation can be obtained 
analytically from (26)  hut the energy spectrum {E , , )  cannot be determined by elementary 
means such as in (2)). 

Shape invariant potentials with two parameters. Let 

in which .f,.(x) is given by ( 1 1 )  and is assumed to be shape invariant so that the 
problem now is how to choose c(x) such that j ; , , ( x )  is also shape invariant. We have 
noted three interesting cases which are: 

(9 2un( 5) = k k constant (28) 

K constant 

Note that the last case concerns the problem of isospectral potentials which was 
discussed previously (Cao 1991) so that below we shall mainly be concerned with the 
first two cases. 

Example 4. We shall start with the simple P6sch-Teller potential U ' =  a tanh x, taking 
a to be the first parameter and solve, for instance, equation (28) .  Obviously the solutions 
of this equation will depend on the parameter k which is arbitrary. We may then 
consider the cases k: U', k > 0, k < 0 and set k = 2ab, b constant. We find the following 
forms of 6 ' ( k )  and f ! k ' = f ' k J  

+2b tanh x (31 )  f - a  +---- b 6' = a tanh x +- 
a a cosh'xc 

A , " , -  b' 4 0 + 1 )  

a ( a + l )  b ( b - 1 )  
? = ( a  - b ) 2 - - + T  

cosh'x sinh x (32 )  
v̂ '= a tanh x - b coth x 

E. = ( a  - b) ' -  ( a  - b - 2 r 1 ) ~  

a ( a + l )  b ( b + l )  f = ( a +  b )2 - -+ -  ; ' = a  t a n h x + b  coth x 
cosh2 x sinh' x (33)* 

E, = ( a +  b ) ' - ( a  + b -2n)2. 
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If we start with U’ = a coth x - 6 / a  we have 

b2 a ( a + l )  
a sinh’x 

+26  coth x f “(0) - a  - 2 t , + T  

(34) 

€ , = a 2 - ( a  -n)’+b2 

Remarks. 
( i )  Equations (31) and (34) are shape invariant with one parameter a ;  b unchanged. 
(ii) Generalizingthe above formulation, we may write (note also the validity of ( 1 7 ) )  

f ( a ,  b;  x )  = h(a, x)+j(b, x ) + C ( a ,  b) 

R ( a , b ) = C ( a , b ) - C ( a , , b , ) .  

(iii) The notation * means simply that the corresponding result is ‘missing’ in actual 
compilations. 

In the same manner, if we consider equation (29 ) ,  the quantities 6’ and ? will 
depend on the choice of the constant K which may be zero, positive or negative. The 
case K = O  does not bring anything new but the case K f O  is meaningful (b  being a 
constant of integration and we assume 0 < a < b )  

- a ( a + l ) + b 2  sinh x 
f = a  - - ( 2 a + l ) b -  cosh x cosh’ x cosh2 x 

b 
I?’= a tanh x-- 

E, = a’- ( a  - n)’ 
(35) 

+ b2cosh’x - (2a  - l ) b  sinh x (36) 
a ( a + l )  C‘= a t anhx+ b coshx ? = a  -- 
cosh’ x 

a ( a + l )  cosh x 
?=a’+- -  (2a+l)b? 

Isinh XI  smh2 x sinh2 x 

b 
v * ’ =  a coth x-- (37) 

a ( a + l )  
iY=a cothx-blsinhxl ? = a 2 + -  + b’sinh’x-(2a + 1)b cosh x. (38) 

sinh’x 

The solutions are given by (26)  in which y are essentially functions of type A in 
the classification scheme of lnfeld and Hull (1953) (Posch-Teller hypergeometric) 
while c(x) can be inferred from equations (28) ,  (29)  which are elementary in the above 
cases. Normalization conditions, on the other hand may, in some cases, lead to further 
restrictions in the use of the parameters. 

If we start with U ’ =  a tan x or cot x of example 1 and proceed exactly as above in 
solving successively equations (28) ,  (29), we obtain other types of potentials which 
are shape invariant with one or two parameters; most of them in fact are already 
reported in these compilations. We quote here only two missing shape-invariant 
potentials, which are 

b’ a ( a - 1 )  ?=-a2+?+-  +2b tan x I?= a tan x + -  b 
a a cos’x 

b’+ a ( a  - 1 )  sin x / =  -a2+  + ( 2 a -  1)b- 
b 

6‘= a tan x+- 
cos x cos’ x cos2 x 
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Example5 We may continue with U'= ax or U'= a l x  and solve successively equations 
(28), ( 2 9 )  in order to obtain other types of potentials reported in these compilations. 
For instance in solving ( 2 9 )  with k = 0 we recover the well known potential with a 
Coulomb term widely discussed elsewhere in the literature. 

We present here only two simple cases which will be interesting in later develop- 
ments. 

(i) U'= - b / x ;  solving (28) with k # 0 and with a slight change in notation we find 
c ( x )  =e-:""*. , $ ( x )  = Nox'+' from ( 2 6 ) .  This result can also be checked by direct 
substitution in the Schrodinger equation with 

(ii) If now u ' = a x ,  and solving ( 2 9 ) ,  we have 

2 = ax + b e-bx2 1 = a2x2+ b2 e 8  + ( 2 a  + 1) bx eCiX2+ a (42) 

which constitutes an example of a non-shape-invariant potential, but a solvable one. 
Its solution is 

$ ( x ) =  N,exp[ - : w ~ ' + ( ~ ) ' ' ~ b @ ( x / d ) ]  

where @(x) is the error function defined by: 

@ ( . ) = - I  2 . -  e-''dr. 
J;; 

Generalization. The technique of the e transformation may be repeated again and 
again, introducing at each step a new parameter ai. For instance after the nth step, 
the wavefunction is 

0-1  

$(Tx) = n c ( a j ,  x ) & ( x )  
i=o 

in which &(x) is the solution corresponding to the starting superpotential u ( x ) .  
Associated with this wavefunction is the nth superpotential u ' " ' ( x )  defined by 

"-1 c; 
v*""(a,, x )  = U'+ - 

r - 1  c; 
(43) 

(i) For shape invariant case, this ~ ' " ' ( x )  must be d closely to the preceding 
ones U, U'", . . , , U'""' through equations of the type ( 2 8 )  or (29). This question is 
actually under investigation. 

(ii) If however we are not interested in the shape-invariance problem, then the 
quantities c : / q  can be chosen almost arbitrarily. In some cases, this may lead to 
non-shape-invariant but exactly solvable potentials as can be seen in the following 
example. 
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Example 6. Let 

an u' (x)=--aIx 
X 

and consider a function c ( x )  such that - c; /c2 = Ax2+ E. Therefore the corresponding 
effective potential V,, will have the polynomial form: 

in which 

b , = A 2  b, = 2Aa, b2=a:+2AB 

b, = 2[A(a,-  l ) + a , B ]  a = 2Ba0. 

The wavefunction and the energy (eigenvalue) are given by: 

i ( x )  = Noxa"+' exp( - [ B x + a $ x 2 + f A x ' ] }  

E.;=2(ao - 1 ) +  E 2 .  

With some minor modifications in the notation, it can be verified that these results are 
similar to those obtained in other references (Varshini er a/ 1989, Sutra 1987). 

(iii) For the special case of polynomial potentials, it can be noted that the function 
c,(x)=exp[-a,x'] so that from (26) we may write 

This remark justifies in a sense the use of the ansatz of Flessas (Flessas 1979, Flessas 
et a /  1981) convenient for dealing with this kind of potential. 

In combining the theorem on the existence of the superpotential with the concept 
of shape invariance, it has been possible first to construct shape-invariant potentials 
with one parameter. Then, with the use of the 'C' transformation, it has been extended 
to shape-invariant potentials with two parameters including furthermore a few 'missing' 
ones in actual compilations. This leads us to the following conclusions. 

(i) The concept of shape invariance is a sufficient but not necessary condition in 
the construction of exactly solvable potentials. 

(ii) It is effectively possible to construct exactly solvable but non-shape-invariant 
potentials (example 6). 

(iii) I t  can be noted that all the various types of potential encountered in the 
present work, namely 

LllC sr,dps-lrr"'ar ld l l l  p"Lclrrr'lls 

the non-shape-invariant but exactly solvable potentials 
the solvable potentials 

.L^ ^L^_^ :....--:-... --.--.:-I- 

can be constructed and incorporated in the frame of the theorem of existence of the 
superpotential. 
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